kubernetes中文手册
  • 前言
    • 序言
  • 云原生
    • 云原生(Cloud Native)的定义
    • 云原生的设计哲学
    • Kubernetes 的诞生
    • Kubernetes 与云原生应用概览
    • 云原生应用之路 —— 从 Kubernetes 到云原生
    • 定义云原生应用
      • OAM
        • Workload
        • Component
        • Trait
        • Application Scope
        • Application Configuration
      • Crossplane
    • 云原生编程语言
      • 云原生编程语言 Ballerina
      • 云原生编程语言 Pulumi
    • 云原生的未来
  • 快速入门
    • 云原生新手入门指南
    • Play with Kubernetes
    • 快速部署一个云原生本地实验环境
    • 使用 Rancher 在阿里云上部署 Kubenretes 集群
  • 概念与原理
    • Kubernetes 架构
      • 设计理念
      • Etcd 解析
      • 开放接口
        • CRI - Container Runtime Interface(容器运行时接口)
        • CNI - Container Network Interface(容器网络接口)
        • CSI - Container Storage Interface(容器存储接口)
      • 资源对象与基本概念解析
    • Pod 状态与生命周期管理
      • Pod 概览
      • Pod 解析
      • Init 容器
      • Pause 容器
      • Pod 安全策略
      • Pod 的生命周期
      • Pod Hook
      • Pod Preset
      • Pod 中断与 PDB(Pod 中断预算)
    • 集群资源管理
      • Node
      • Namespace
      • Label
      • Annotation
      • Taint 和 Toleration(污点和容忍)
      • 垃圾收集
    • 控制器
      • Deployment
      • StatefulSet
      • DaemonSet
      • ReplicationController 和 ReplicaSet
      • Job
      • CronJob
      • Horizontal Pod Autoscaling
        • 自定义指标 HPA
      • 准入控制器(Admission Controller)
    • 服务发现与路由
      • Service
      • 拓扑感知路由
      • Ingress
        • Traefik Ingress Controller
      • Kubernetes Service API
        • Service API 简介
    • 身份与权限控制
      • ServiceAccount
      • 基于角色的访问控制(RBAC)
      • NetworkPolicy
    • 网络
      • Kubernetes 中的网络解析 —— 以 flannel 为例
      • Kubernetes 中的网络解析 —— 以 calico 为例
      • 具备 API 感知的网络和安全性管理开源软件 Cilium
        • Cilium 架构设计与概念解析
    • 存储
      • Secret
      • ConfigMap
        • ConfigMap 的热更新
      • Volume
      • 持久化卷(Persistent Volume)
      • Storage Class
      • 本地持久化存储
    • 集群扩展
      • 使用自定义资源扩展 API
      • 使用 CRD 扩展 Kubernetes API
      • Aggregated API Server
      • APIService
      • Service Catalog
    • 多集群管理
      • 多集群服务 API(Multi-Cluster Services API)
      • 集群联邦(Cluster Federation)
    • 资源调度
      • 服务质量等级(QoS)
  • 用户指南
    • 用户指南概览
    • 资源对象配置
      • 配置 Pod 的 liveness 和 readiness 探针
      • 配置 Pod 的 Service Account
      • Secret 配置
      • 管理 namespace 中的资源配额
    • 命令使用
      • Docker 用户过渡到 kubectl 命令行指南
      • kubectl 命令概览
      • kubectl 命令技巧大全
      • 使用 etcdctl 访问 Kubernetes 数据
    • 集群安全性管理
      • 管理集群中的 TLS
      • kubelet 的认证授权
      • TLS Bootstrap
      • 创建用户认证授权的 kubeconfig 文件
      • IP 伪装代理
      • 使用 kubeconfig 或 token 进行用户身份认证
      • Kubernetes 中的用户与身份认证授权
      • Kubernetes 集群安全性配置最佳实践
    • 访问 Kubernetes 集群
      • 访问集群
      • 使用 kubeconfig 文件配置跨集群认证
      • 通过端口转发访问集群中的应用程序
      • 使用 service 访问群集中的应用程序
      • 从外部访问 Kubernetes 中的 Pod
      • Cabin - Kubernetes 手机客户端
      • Lens - Kubernetes IDE/桌面客户端
      • Kubernator - 更底层的 Kubernetes UI
    • 在 Kubernetes 中开发部署应用
      • 适用于 Kubernetes 的应用开发部署流程
      • 迁移传统应用到 Kubernetes 中 —— 以 Hadoop YARN 为例
      • 使用 StatefulSet 部署用状态应用
  • 最佳实践
    • 最佳实践概览
    • 在 CentOS 上部署 Kubernetes 集群
      • 创建 TLS 证书和秘钥
      • 创建 kubeconfig 文件
      • 创建高可用 etcd 集群
      • 安装 kubectl 命令行工具
      • 部署 master 节点
      • 安装 flannel 网络插件
      • 部署 node 节点
      • 安装 kubedns 插件
      • 安装 dashboard 插件
      • 安装 heapster 插件
      • 安装 EFK 插件
    • 生产级的 Kubernetes 简化管理工具 kubeadm
      • 使用 kubeadm 在 Ubuntu Server 16.04 上快速构建测试集群
    • 服务发现与负载均衡
      • 安装 Traefik ingress
      • 分布式负载测试
      • 网络和集群性能测试
      • 边缘节点配置
      • 安装 Nginx ingress
      • 安装配置 DNS
        • 安装配置 Kube-dns
        • 安装配置 CoreDNS
    • 运维管理
      • Master 节点高可用
      • 服务滚动升级
      • 应用日志收集
      • 配置最佳实践
      • 集群及应用监控
      • 数据持久化问题
      • 管理容器的计算资源
    • 存储管理
      • GlusterFS
        • 使用 GlusterFS 做持久化存储
        • 使用 Heketi 作为 Kubernetes 的持久存储 GlusterFS 的 external provisioner
        • 在 OpenShift 中使用 GlusterFS 做持久化存储
      • GlusterD-2.0
      • Ceph
        • 用 Helm 托管安装 Ceph 集群并提供后端存储
        • 使用 Ceph 做持久化存储
        • 使用 rbd-provisioner 提供 rbd 持久化存储
      • OpenEBS
        • 使用 OpenEBS 做持久化存储
      • Rook
      • NFS
        • 利用 NFS 动态提供 Kubernetes 后端存储卷
    • 集群与应用监控
      • Heapster
        • 使用 Heapster 获取集群和对象的 metric 数据
      • Prometheus
        • 使用 Prometheus 监控 Kubernetes 集群
        • Prometheus 查询语言 PromQL 使用说明
      • 使用 Vistio 监控 Istio 服务网格中的流量
    • 分布式追踪
      • OpenTracing
    • 服务编排管理
      • 使用 Helm 管理 Kubernetes 应用
      • 构建私有 Chart 仓库
    • 持续集成与发布
      • 使用 Jenkins 进行持续集成与发布
      • 使用 Drone 进行持续集成与发布
    • 更新与升级
      • 手动升级 Kubernetes 集群
      • 升级 dashboard
    • 扩展控制器
      • OpenKruise
        • 原地升级
    • 安全策略
      • 开放策略代理(OPA)
      • 云原生安全
  • 服务网格
    • 服务网格(Service Mesh)
    • 企业级服务网格架构
      • 服务网格基础
      • 服务网格技术对比
      • 服务网格对比 API 网关
      • 采纳和演进
      • 定制和集成
      • 总结
    • Istio
      • 使用 Istio 前需要考虑的问题
      • Istio 中 sidecar 的注入规范及示例
      • 如何参与 Istio 社区及注意事项
      • Istio 免费学习资源汇总
      • Sidecar 的注入与流量劫持
      • Envoy Sidecar 代理的路由转发
      • Istio 如何支持虚拟机
      • Istio 支持虚拟机的历史
    • Envoy
      • Envoy 的架构与基本术语
      • Envoy 作为前端代理
      • Envoy mesh 教程
  • 领域应用
    • 领域应用概览
    • 微服务架构
      • 微服务中的服务发现
      • 使用 Java 构建微服务并发布到 Kubernetes 平台
        • Spring Boot 快速开始指南
    • 大数据
      • Spark 与 Kubernetes
        • Spark standalone on Kubernetes
        • 运行支持 Kubernetes 原生调度的 Spark 程序
    • Serverless 架构
      • 理解 Serverless
      • FaaS(函数即服务)
        • OpenFaaS 快速入门指南
      • Knative
    • 边缘计算
    • 人工智能
    • 可观察性
  • 开发指南
    • 开发指南概览
    • SIG 和工作组
    • 开发环境搭建
      • 本地分布式开发环境搭建(使用 Vagrant 和 Virtualbox)
    • 单元测试和集成测试
    • client-go 示例
      • client-go 中的 informer 源码分析
    • Operator
      • operator-sdk
    • kubebuilder
      • 使用 kubebuilder 创建 operator 示例
    • 高级开发指南
    • 社区贡献
    • Minikube
  • 社区及生态
    • 云原生计算基金会(CNCF)
      • CNCF 章程
      • CNCF 特别兴趣小组(SIG)说明
      • 开源项目加入 CNCF Sandbox 的要求
      • CNCF 中的项目治理
      • CNCF Ambassador
    • 认证及培训
      • 认证 Kubernetes 服务提供商(KCSP)说明
      • 认证 Kubernetes 管理员(CKA)说明
  • 附录
    • 附录说明
    • Kubernetes 中的应用故障排查
    • Kubernetes 相关资讯和情报链接
    • Docker 最佳实践
    • Kubernetes 使用技巧
    • Kubernetes 相关问题记录
    • Kubernetes 及云原生年度总结及展望
      • Kubernetes 与云原生 2017 年年终总结及 2018 年展望
      • Kubernetes 与云原生 2018 年年终总结及 2019 年展望
    • CNCF 年度报告解读
      • CNCF 2018 年年度报告解读
      • CNCF 2020 年年度报告解读
由 GitBook 提供支持
在本页
  • 前提条件
  • 部署应用
  • 部署 edge envoy
  • 部署 usersvc2
  • 服务发现服务 - SDS
  • 参考
  1. 服务网格
  2. Envoy

Envoy mesh 教程

上一页Envoy 作为前端代理下一页领域应用概览

最后更新于3年前

本文是在 Kubernetes 集群中,使用 Envoy 来做 mesh,来为一个简单的使用 Python 编写的 Flask 应用程序做反向代理和负载均衡。

注:本教程中的示例来自 ,本文中使用的所有的代码和 YAML 配置见 。

前提条件

部署应用

我们首先将应用部署到 Kubernetes 中。

部署 postgres 数据库。

kubectl apply -f postgres

创建 usersvc 镜像。

docker build -t jimmysong/usersvc:step1 .

部署 usersvc。

kubectl apply -f usersvc

查看 uservc 的 ClusterIP 地址。

$ kubectl get svc usersvc
kubectl get svc usersvc
NAME      TYPE        CLUSTER-IP       EXTERNAL-IP   PORT(S)    AGE
usersvc   ClusterIP   10.254.176.248   <none>        5000/TCP   11m

进到 node1 中访问该服务,因为我们要访问的是 ClusterIP,在我们自己的电脑上是无法直接访问的,所以进到虚拟机中操作。

$ vagrant ssh node1
$ curl 10.254.176.248:5000
{
  "hostname": "usersvc-7cf5bb9d85-9gx7w",
  "msg": "user health check OK",
  "ok": true,
  "resolvedname": "172.33.10.7"
}

尝试添加一个名为 Alice 的用户。

$ curl -X PUT -H "Content-Type: application/json" \
    -d '{ "fullname": "Alice", "password": "alicerules" }' \
    10.254.176.248/user/alice

将会看到类似如下的输出。

{
  "fullname": "Alice",
  "hostname": "usersvc-7cf5bb9d85-9gx7w",
  "ok": true,
  "resolvedname": "172.33.10.7",
  "uuid": "EF43B475F65848C6BE708F436305864B"
}

尝试再添加一个名为 Bob 的用户。

$ curl -X PUT -H "Content-Type: application/json" \
    -d '{ "fullname": "Bob", "password": "bobrules" }' \
    10.254.176.248/user/bob

将会看到类似如下的输出。

{
  "fullname": "Bob",
  "hostname": "usersvc-7cf5bb9d85-9gx7w",
  "ok": true,
  "resolvedname": "172.33.10.7",
  "uuid": "6AC944E7D4254D9A811A82C0FDAC3046"
}

当应用部署完毕后,我们该部署 edge envoy 了。

部署 edge envoy

部署 edge envoy 的方式很简单,执行下面的命令。

kubectl apply -f edge-envoy

现在访问 edge envoy 是就可以路由到 usersvc 上的,当然直接访问 usersvc 也是可以的。

我们看下 edge-envoy 的 envoy 配置文件定义。

{
  "listeners": [
    {
      "address": "tcp://0.0.0.0:80",
      "filters": [
        {
          "type": "read",
          "name": "http_connection_manager",
          "config": {
            "codec_type": "auto",
            "stat_prefix": "ingress_http",
            "route_config": {
              "virtual_hosts": [
                {
                  "name": "backend",
                  "domains": ["*"],
                  "routes": [
                    {
                      "timeout_ms": 0,
                      "prefix": "/user",
                      "cluster": "usersvc"
                    }
                  ]
                }
              ]
            },
            "filters": [
              {
                "type": "decoder",
                "name": "router",
                "config": {}
              }
            ]
          }
        }
      ]
    }
  ],
  "admin": {
    "access_log_path": "/dev/null",
    "address": "tcp://127.0.0.1:8001"
  },
  "cluster_manager": {
    "clusters": [
      {
        "name": "usersvc",
        "connect_timeout_ms": 250,
        "type": "strict_dns",
        "service_name": "usersvc",
        "lb_type": "round_robin",
        "features": "http2",
        "hosts": [
          {
            "url": "tcp://usersvc:80"
          }
        ]
      }
    ]
  }
}

客户端访问 edge-envoy 的 ClusterIP:8000/user/health 就可以检查节点的健康状况。

部署 usersvc2

删除原来的 usersvc,部署第二版 usersvc2,它与原来的 usersvc 唯一不同的地方是在 entrypoint 中集成了 envoy,查看 Dockerfile 中指定的 entrypoint.sh 的内容便可知。

#!/bin/sh

python /application/service.py &
/usr/local/bin/envoy -c /application/envoy.json

首先删除老的 usersvc。

kubectl delete -f usersvc

使用下面的命令部署 usersvc2,它仍然使用 usersvc 这个 service 名称。

kubectl apply -f usersvc2

Envoy 以 out-of-process 的方式运行,对应用进程没有侵入性,也可以使用 sidecar 的方式运行,让 envoy 与 应用容器运行在同一个 pod 中。

增加 usersvc2 的实例个数。

kubectl scale --replicas=3 deployment/usersvc

此时我们有 3 个 usersvc 实例,现在通过 edge-envoy 的 ClusterIP:8000/user/health 检查节点的健康状况时,是不是会轮询的访问到后端的的 usersvc2 的实例呢?

我们当初在 edge-node 的 envoy.json 中配置过 cluster 的,其中指定了 lb_type 为 round_robin 。

  "cluster_manager": {
    "clusters": [
      {
        "name": "usersvc",
        "connect_timeout_ms": 250,
        "type": "strict_dns",
        "service_name": "usersvc",
        "lb_type": "round_robin",
        "features": "http2",
        "hosts": [
          {
            "url": "tcp://usersvc:80"
          }
        ]
      }
    ]
  }

而且该 serivce_name 也可以被 DNS 正确解析。

root@usersvc-55b6857d44-gcg5c:/application# nslookup usersvc
Server:         10.254.0.2
Address:        10.254.0.2#53

Name:   usersvc.envoy-tutorial.svc.cluster.local
Address: 10.254.123.166

答案是否定的。

虽然通过 DNS 可以正确的解析出 serivce 的 ClusterIP,但是负载均衡不再通过 kube-proxy 实现,所以不论我们访问多少次 edge-envoy 永远只能访问到一个固定的后端 usersvc。

服务发现服务 - SDS

Kubernetes 中的 DNS 可以发现所有 serivce 的 ClusterIP,但是 DNS 中不包括所有 endpoint 地址,我们需要一个 SDS(服务发现服务)来发现服务的所有的 endpoint,我们将修改 lb_type,使用 sds 替代 strict_dns。

执行下面的命令部署 SDS。

kubectl apply -f usersvc-sds

因为在添加了 SDS 之后需要修改 edge-envoy 中的 envoy.josn 配置,在 clusters 字段中增加 sds 信息,我们将所有的配置都写好了,重新打包成了镜像,我们需要先删除之前部署的 edge-envoy。

kubectl delete -f edge-envoy

部署新的 edge-envoy2。

kubectl apply -f edge-envoy2

连续访问 usersvc 12 次看看输出结果如何。

URL=http://172.17.8.101:30800/user/alice
for i in `seq 1 12`;do curl -s $URL|grep "resolvedname"|tr -d " "|tr -d ","|tr -d '"';done

我们可以看到类似如下的输出:

resolvedname:172.33.71.2
resolvedname:172.33.88.2
resolvedname:172.33.10.2
resolvedname:172.33.71.2
resolvedname:172.33.88.2
resolvedname:172.33.10.2
resolvedname:172.33.71.2
resolvedname:172.33.88.2
resolvedname:172.33.10.2
resolvedname:172.33.71.2
resolvedname:172.33.88.2
resolvedname:172.33.10.2

再查看下 usersvc 服务的所有 pod 的 IP 地址。

$ kubectl get pod -l service=usersvc -o wide
NAME                       READY     STATUS    RESTARTS   AGE       IP            NODE
usersvc-55b6857d44-mkfpv   1/1       Running   0          9m        172.33.88.2   node1
usersvc-55b6857d44-q98jg   1/1       Running   0          9m        172.33.71.2   node2
usersvc-55b6857d44-s2znk   1/1       Running   0          9m        172.33.10.2   node3

我们看到 round-robin 负载均衡生效了。

参考

使用 部署 kubernetes 集群,只要启动集群并安装了 CoreDNS 即可,无须安装其他插件。

kubernetes-vagrant-centos-cluster
Part 2: Deploying Envoy with a Python Flask webapp and Kubernetes - getambassador.io
envoy-steps - github.com
kubernetes-vagrant-centos-cluster - github.com
envoy-tutorial - github.com
envoy-steps
envoy-tutorial
Envoy Mesh架构图