kubernetes中文手册
  • 前言
    • 序言
  • 云原生
    • 云原生(Cloud Native)的定义
    • 云原生的设计哲学
    • Kubernetes 的诞生
    • Kubernetes 与云原生应用概览
    • 云原生应用之路 —— 从 Kubernetes 到云原生
    • 定义云原生应用
      • OAM
        • Workload
        • Component
        • Trait
        • Application Scope
        • Application Configuration
      • Crossplane
    • 云原生编程语言
      • 云原生编程语言 Ballerina
      • 云原生编程语言 Pulumi
    • 云原生的未来
  • 快速入门
    • 云原生新手入门指南
    • Play with Kubernetes
    • 快速部署一个云原生本地实验环境
    • 使用 Rancher 在阿里云上部署 Kubenretes 集群
  • 概念与原理
    • Kubernetes 架构
      • 设计理念
      • Etcd 解析
      • 开放接口
        • CRI - Container Runtime Interface(容器运行时接口)
        • CNI - Container Network Interface(容器网络接口)
        • CSI - Container Storage Interface(容器存储接口)
      • 资源对象与基本概念解析
    • Pod 状态与生命周期管理
      • Pod 概览
      • Pod 解析
      • Init 容器
      • Pause 容器
      • Pod 安全策略
      • Pod 的生命周期
      • Pod Hook
      • Pod Preset
      • Pod 中断与 PDB(Pod 中断预算)
    • 集群资源管理
      • Node
      • Namespace
      • Label
      • Annotation
      • Taint 和 Toleration(污点和容忍)
      • 垃圾收集
    • 控制器
      • Deployment
      • StatefulSet
      • DaemonSet
      • ReplicationController 和 ReplicaSet
      • Job
      • CronJob
      • Horizontal Pod Autoscaling
        • 自定义指标 HPA
      • 准入控制器(Admission Controller)
    • 服务发现与路由
      • Service
      • 拓扑感知路由
      • Ingress
        • Traefik Ingress Controller
      • Kubernetes Service API
        • Service API 简介
    • 身份与权限控制
      • ServiceAccount
      • 基于角色的访问控制(RBAC)
      • NetworkPolicy
    • 网络
      • Kubernetes 中的网络解析 —— 以 flannel 为例
      • Kubernetes 中的网络解析 —— 以 calico 为例
      • 具备 API 感知的网络和安全性管理开源软件 Cilium
        • Cilium 架构设计与概念解析
    • 存储
      • Secret
      • ConfigMap
        • ConfigMap 的热更新
      • Volume
      • 持久化卷(Persistent Volume)
      • Storage Class
      • 本地持久化存储
    • 集群扩展
      • 使用自定义资源扩展 API
      • 使用 CRD 扩展 Kubernetes API
      • Aggregated API Server
      • APIService
      • Service Catalog
    • 多集群管理
      • 多集群服务 API(Multi-Cluster Services API)
      • 集群联邦(Cluster Federation)
    • 资源调度
      • 服务质量等级(QoS)
  • 用户指南
    • 用户指南概览
    • 资源对象配置
      • 配置 Pod 的 liveness 和 readiness 探针
      • 配置 Pod 的 Service Account
      • Secret 配置
      • 管理 namespace 中的资源配额
    • 命令使用
      • Docker 用户过渡到 kubectl 命令行指南
      • kubectl 命令概览
      • kubectl 命令技巧大全
      • 使用 etcdctl 访问 Kubernetes 数据
    • 集群安全性管理
      • 管理集群中的 TLS
      • kubelet 的认证授权
      • TLS Bootstrap
      • 创建用户认证授权的 kubeconfig 文件
      • IP 伪装代理
      • 使用 kubeconfig 或 token 进行用户身份认证
      • Kubernetes 中的用户与身份认证授权
      • Kubernetes 集群安全性配置最佳实践
    • 访问 Kubernetes 集群
      • 访问集群
      • 使用 kubeconfig 文件配置跨集群认证
      • 通过端口转发访问集群中的应用程序
      • 使用 service 访问群集中的应用程序
      • 从外部访问 Kubernetes 中的 Pod
      • Cabin - Kubernetes 手机客户端
      • Lens - Kubernetes IDE/桌面客户端
      • Kubernator - 更底层的 Kubernetes UI
    • 在 Kubernetes 中开发部署应用
      • 适用于 Kubernetes 的应用开发部署流程
      • 迁移传统应用到 Kubernetes 中 —— 以 Hadoop YARN 为例
      • 使用 StatefulSet 部署用状态应用
  • 最佳实践
    • 最佳实践概览
    • 在 CentOS 上部署 Kubernetes 集群
      • 创建 TLS 证书和秘钥
      • 创建 kubeconfig 文件
      • 创建高可用 etcd 集群
      • 安装 kubectl 命令行工具
      • 部署 master 节点
      • 安装 flannel 网络插件
      • 部署 node 节点
      • 安装 kubedns 插件
      • 安装 dashboard 插件
      • 安装 heapster 插件
      • 安装 EFK 插件
    • 生产级的 Kubernetes 简化管理工具 kubeadm
      • 使用 kubeadm 在 Ubuntu Server 16.04 上快速构建测试集群
    • 服务发现与负载均衡
      • 安装 Traefik ingress
      • 分布式负载测试
      • 网络和集群性能测试
      • 边缘节点配置
      • 安装 Nginx ingress
      • 安装配置 DNS
        • 安装配置 Kube-dns
        • 安装配置 CoreDNS
    • 运维管理
      • Master 节点高可用
      • 服务滚动升级
      • 应用日志收集
      • 配置最佳实践
      • 集群及应用监控
      • 数据持久化问题
      • 管理容器的计算资源
    • 存储管理
      • GlusterFS
        • 使用 GlusterFS 做持久化存储
        • 使用 Heketi 作为 Kubernetes 的持久存储 GlusterFS 的 external provisioner
        • 在 OpenShift 中使用 GlusterFS 做持久化存储
      • GlusterD-2.0
      • Ceph
        • 用 Helm 托管安装 Ceph 集群并提供后端存储
        • 使用 Ceph 做持久化存储
        • 使用 rbd-provisioner 提供 rbd 持久化存储
      • OpenEBS
        • 使用 OpenEBS 做持久化存储
      • Rook
      • NFS
        • 利用 NFS 动态提供 Kubernetes 后端存储卷
    • 集群与应用监控
      • Heapster
        • 使用 Heapster 获取集群和对象的 metric 数据
      • Prometheus
        • 使用 Prometheus 监控 Kubernetes 集群
        • Prometheus 查询语言 PromQL 使用说明
      • 使用 Vistio 监控 Istio 服务网格中的流量
    • 分布式追踪
      • OpenTracing
    • 服务编排管理
      • 使用 Helm 管理 Kubernetes 应用
      • 构建私有 Chart 仓库
    • 持续集成与发布
      • 使用 Jenkins 进行持续集成与发布
      • 使用 Drone 进行持续集成与发布
    • 更新与升级
      • 手动升级 Kubernetes 集群
      • 升级 dashboard
    • 扩展控制器
      • OpenKruise
        • 原地升级
    • 安全策略
      • 开放策略代理(OPA)
      • 云原生安全
  • 服务网格
    • 服务网格(Service Mesh)
    • 企业级服务网格架构
      • 服务网格基础
      • 服务网格技术对比
      • 服务网格对比 API 网关
      • 采纳和演进
      • 定制和集成
      • 总结
    • Istio
      • 使用 Istio 前需要考虑的问题
      • Istio 中 sidecar 的注入规范及示例
      • 如何参与 Istio 社区及注意事项
      • Istio 免费学习资源汇总
      • Sidecar 的注入与流量劫持
      • Envoy Sidecar 代理的路由转发
      • Istio 如何支持虚拟机
      • Istio 支持虚拟机的历史
    • Envoy
      • Envoy 的架构与基本术语
      • Envoy 作为前端代理
      • Envoy mesh 教程
  • 领域应用
    • 领域应用概览
    • 微服务架构
      • 微服务中的服务发现
      • 使用 Java 构建微服务并发布到 Kubernetes 平台
        • Spring Boot 快速开始指南
    • 大数据
      • Spark 与 Kubernetes
        • Spark standalone on Kubernetes
        • 运行支持 Kubernetes 原生调度的 Spark 程序
    • Serverless 架构
      • 理解 Serverless
      • FaaS(函数即服务)
        • OpenFaaS 快速入门指南
      • Knative
    • 边缘计算
    • 人工智能
    • 可观察性
  • 开发指南
    • 开发指南概览
    • SIG 和工作组
    • 开发环境搭建
      • 本地分布式开发环境搭建(使用 Vagrant 和 Virtualbox)
    • 单元测试和集成测试
    • client-go 示例
      • client-go 中的 informer 源码分析
    • Operator
      • operator-sdk
    • kubebuilder
      • 使用 kubebuilder 创建 operator 示例
    • 高级开发指南
    • 社区贡献
    • Minikube
  • 社区及生态
    • 云原生计算基金会(CNCF)
      • CNCF 章程
      • CNCF 特别兴趣小组(SIG)说明
      • 开源项目加入 CNCF Sandbox 的要求
      • CNCF 中的项目治理
      • CNCF Ambassador
    • 认证及培训
      • 认证 Kubernetes 服务提供商(KCSP)说明
      • 认证 Kubernetes 管理员(CKA)说明
  • 附录
    • 附录说明
    • Kubernetes 中的应用故障排查
    • Kubernetes 相关资讯和情报链接
    • Docker 最佳实践
    • Kubernetes 使用技巧
    • Kubernetes 相关问题记录
    • Kubernetes 及云原生年度总结及展望
      • Kubernetes 与云原生 2017 年年终总结及 2018 年展望
      • Kubernetes 与云原生 2018 年年终总结及 2019 年展望
    • CNCF 年度报告解读
      • CNCF 2018 年年度报告解读
      • CNCF 2020 年年度报告解读
由 GitBook 提供支持
在本页
  • kube-dns
  • 前提要求
  • kube-dns 介绍
  • kube-dns 支持的 DNS 格式
  • kube-dns 存根域名
  • 继承节点的 DNS
  • 配置存根域和上游 DNS 服务器
  • 对 Pod 的影响
  • ConfigMap 选项
  • 示例
  • 调试 DNS 解析
  • 创建一个简单的 Pod 用作测试环境
  • 首先检查本地 DNS 配置
  • 检查 DNS pod 是否在运行
  • 检查 DNS pod 中的错误
  • DNS 服务启动了吗?
  • DNS 端点暴露出来了吗?
  • 已知问题
  • Kubernetes 集群联邦(多可用区支持)
  • 参考
  1. 最佳实践
  2. 服务发现与负载均衡
  3. 安装配置 DNS

安装配置 Kube-dns

上一页安装配置 DNS下一页安装配置 CoreDNS

最后更新于3年前

在我们安装Kubernetes集群的时候就已经安装了kube-dns插件,这个插件也是官方推荐安装的。通过将 Service 注册到 DNS 中,Kuberentes 可以为我们提供一种简单的服务注册发现与负载均衡方式。

作为CNCF中的托管的一个项目,在Kuberentes1.9版本中,使用kubeadm方式安装的集群可以通过以下命令直接安装CoreDNS。

kubeadm init --feature-gates=CoreDNS=true

您也可以使用CoreDNS替换Kubernetes插件kube-dns,可以使用 Pod 部署也可以独立部署,请参考,下文将介绍如何配置kube-dns。

kube-dns

kube-dns是Kubernetes中的一个内置插件,目前作为一个独立的开源项目维护,见。

下文中给出了配置 DNS Pod 的提示和定义 DNS 解析过程以及诊断 DNS 问题的指南。

前提要求

  • Kubernetes 1.6 及以上版本。

  • 集群必须使用 kube-dns 插件进行配置。

kube-dns 介绍

从 Kubernetes v1.3 版本开始,使用 cluster add-on 插件管理器回自动启动内置的 DNS。

Kubernetes DNS pod 中包括 3 个容器:

  • kubedns:kubedns 进程监视 Kubernetes master 中的 Service 和 Endpoint 的变化,并维护内存查找结构来服务DNS请求。

  • dnsmasq:dnsmasq 容器添加 DNS 缓存以提高性能。

  • sidecar:sidecar 容器在执行双重健康检查(针对 dnsmasq 和 kubedns)时提供单个健康检查端点(监听在10054端口)。

DNS pod 具有静态 IP 并作为 Kubernetes 服务暴露出来。该静态 IP 分配后,kubelet 会将使用 --cluster-dns = <dns-service-ip> 标志配置的 DNS 传递给每个容器。

DNS 名称也需要域名。本地域可以使用标志 --cluster-domain = <default-local-domain> 在 kubelet 中配置。

kube-dns 支持的 DNS 格式

kube-dns 将分别为 service 和 pod 生成不同格式的 DNS 记录。

Service

  • A记录:生成my-svc.my-namespace.svc.cluster.local域名,解析成 IP 地址,分为两种情况:

    • 普通 Service:解析成 ClusterIP

    • Headless Service:解析为指定 Pod 的 IP 列表

  • SRV记录:为命名的端口(普通 Service 或 Headless Service)生成 _my-port-name._my-port-protocol.my-svc.my-namespace.svc.cluster.local 的域名

Pod

  • A记录:生成域名 pod-ip.my-namespace.pod.cluster.local

kube-dns 存根域名

可以在 Pod 中指定 hostname 和 subdomain:hostname.custom-subdomain.default.svc.cluster.local,例如:

apiVersion: v1
kind: Pod
metadata:
  name: busybox
  labels:
    name: busybox
spec:
  hostname: busybox-1
  subdomain: busybox-subdomain
  containers:
  name: busybox
  - image: busybox
    command:
    - sleep
    - "3600"

该 Pod 的域名是 busybox-1.busybox-subdomain.default.svc.cluster.local。

继承节点的 DNS

运行 Pod 时,kubelet 将预先配置集群 DNS 服务器到 Pod 中,并搜索节点自己的 DNS 设置路径。如果节点能够解析特定于较大环境的 DNS 名称,那么 Pod 应该也能够解析。请参阅下面的已知问题以了解警告。

如果您不想要这个,或者您想要为 Pod 设置不同的 DNS 配置,您可以给 kubelet 指定 --resolv-conf 标志。将该值设置为 "" 意味着 Pod 不继承 DNS。将其设置为有效的文件路径意味着 kubelet 将使用此文件而不是 /etc/resolv.conf 用于 DNS 继承。

配置存根域和上游 DNS 服务器

通过为 kube-dns (kube-system:kube-dns)提供一个 ConfigMap,集群管理员能够指定自定义存根域和上游 nameserver。

例如,下面的 ConfigMap 建立了一个 DNS 配置,它具有一个单独的存根域和两个上游 nameserver:

apiVersion: v1
kind: ConfigMap
metadata:
  name: kube-dns
  namespace: kube-system
data:
  stubDomains: |
    {“acme.local”: [“1.2.3.4”]}
  upstreamNameservers: |
    [“8.8.8.8”, “8.8.4.4”]

如上面指定的那样,带有“.acme.local”后缀的 DNS 请求被转发到 1.2.3.4 处监听的 DNS。Google Public DNS 为上游查询提供服务。

下表描述了如何将具有特定域名的查询映射到其目标DNS服务器:

域名
响应查询的服务器

kubernetes.default.svc.cluster.local

kube-dns

foo.acme.local

自定义 DNS (1.2.3.4)

widget.com

上游 DNS (8.8.8.8 或 8.8.4.4)

查看 ConfigMap 选项获取更多关于配置选项格式的详细信息。

对 Pod 的影响

自定义的上游名称服务器和存根域不会影响那些将自己的 dnsPolicy 设置为 Default 或者 None 的 Pod。

如果 Pod 的 dnsPolicy 设置为 “ClusterFirst”,则其名称解析将按其他方式处理,具体取决于存根域和上游 DNS 服务器的配置。

未进行自定义配置:没有匹配上配置的集群域名后缀的任何请求,例如 “www.kubernetes.io”,将会被转发到继承自节点的上游 nameserver。

进行自定义配置:如果配置了存根域和上游 DNS 服务器(和在前面例子配置的一样),DNS 查询将根据下面的流程进行路由:

  1. 查询首先被发送到 kube-dns 中的 DNS 缓存层。

  2. 从缓存层,检查请求的后缀,并转发到合适的 DNS 上,基于如下的示例:

    • 具有集群后缀的名字(例如 “.cluster.local”):请求被发送到 kube-dns。

    • 具有存根域后缀的名字(例如 “.acme.local”):请求被发送到配置的自定义 DNS 解析器(例如:监听在 1.2.3.4)。

    • 不具有能匹配上后缀的名字(例如 “widget.com”):请求被转发到上游 DNS(例如:Google 公共 DNS 服务器,8.8.8.8 和 8.8.4.4)。

ConfigMap 选项

kube-dns kube-system:kube-dns ConfigMap 的选项如下所示:

字段
格式
描述

stubDomains(可选)

使用 DNS 后缀 key 的 JSON map(例如 “acme.local”),以及 DNS IP 的 JSON 数组作为 value。

目标 nameserver 可能是一个 Kubernetes Service。例如,可以运行自己的 dnsmasq 副本,将 DNS 名字暴露到 ClusterDNS namespace 中。

upstreamNameservers(可选)

DNS IP 的 JSON 数组。

注意:如果指定,则指定的值会替换掉被默认从节点的 /etc/resolv.conf 中获取到的 nameserver。限制:最多可以指定三个上游 nameserver。

示例

示例:存根域

在这个例子中,用户有一个 Consul DNS 服务发现系统,他们希望能够与 kube-dns 集成起来。 Consul 域名服务器地址为 10.150.0.1,所有的 Consul 名字具有后缀 .consul.local。 要配置 Kubernetes,集群管理员只需要简单地创建一个 ConfigMap 对象,如下所示:

apiVersion: v1
kind: ConfigMap
metadata:
  name: kube-dns
  namespace: kube-system
data:
  stubDomains: |
    {“consul.local”: [“10.150.0.1”]}

注意,集群管理员不希望覆盖节点的上游 nameserver,所以他们不会指定可选的 upstreamNameservers 字段。

示例:上游 nameserver

在这个示例中,集群管理员不希望显式地强制所有非集群 DNS 查询进入到他们自己的 nameserver 172.16.0.1。 而且这很容易实现:他们只需要创建一个 ConfigMap,upstreamNameservers 字段指定期望的 nameserver 即可。

apiVersion: v1
kind: ConfigMap
metadata:
  name: kube-dns
  namespace: kube-system
data:
  upstreamNameservers: |
    [“172.16.0.1”]

调试 DNS 解析

创建一个简单的 Pod 用作测试环境

创建一个名为 busybox.yaml 的文件,其中包括以下内容:

apiVersion: v1
kind: Pod
metadata:
  name: busybox
  namespace: default
spec:
  containers:
  - name: busybox
    image: busybox
    command:
      - sleep
      - "3600"
    imagePullPolicy: IfNotPresent
  restartPolicy: Always

使用该文件创建 Pod 并验证其状态:

$ kubectl create -f busybox.yaml pod "busybox" created

$ kubectl get pods busybox NAME READY STATUS RESTARTS AGE busybox 1/1 Running 0

该 Pod 运行后,您可以在它的环境中执行 `nslookup`。如果您看到类似如下的输出,表示 DNS 正在正确工作。

​```bash
$ kubectl exec -ti busybox -- nslookup kubernetes.default
Server:    10.0.0.10
Address 1: 10.0.0.10

Name:      kubernetes.default
Address 1: 10.0.0.1

如果 nslookup 命令失败,检查如下内容:

首先检查本地 DNS 配置

查看下 resolv.conf 文件。

$ kubectl exec busybox cat /etc/resolv.conf

验证搜索路径和名称服务器设置如下(请注意,搜索路径可能因不同的云提供商而异):

search default.svc.cluster.local svc.cluster.local cluster.local google.internal c.gce_project_id.internal
nameserver 10.0.0.10
options ndots:5

如果看到如下错误表明错误来自 kube-dns 或相关服务:

$ kubectl exec -ti busybox -- nslookup kubernetes.default
Server:    10.0.0.10
Address 1: 10.0.0.10

nslookup: can't resolve 'kubernetes.default'

或者

$ kubectl exec -ti busybox -- nslookup kubernetes.default
Server:    10.0.0.10
Address 1: 10.0.0.10 kube-dns.kube-system.svc.cluster.local

nslookup: can't resolve 'kubernetes.default'

检查 DNS pod 是否在运行

使用 kubectl get pods 命令验证 DNS pod 是否正在运行。

$ kubectl get pods --namespace=kube-system -l k8s-app=kube-dns
NAME                    READY     STATUS    RESTARTS   AGE
...
kube-dns-v19-ezo1y      3/3       Running   0           1h
...

如果您看到没有 Pod 运行或者 Pod 处于 失败/完成 状态,DNS 插件可能没有部署到您的当前环境中,您需要手动部署。

检查 DNS pod 中的错误

使用 kubectl logs 命令查看 DNS 守护进程的日志。

$ kubectl logs --namespace=kube-system $(kubectl get pods --namespace=kube-system -l k8s-app=kube-dns -o name) -c kubedns
$ kubectl logs --namespace=kube-system $(kubectl get pods --namespace=kube-system -l k8s-app=kube-dns -o name) -c dnsmasq
$ kubectl logs --namespace=kube-system $(kubectl get pods --namespace=kube-system -l k8s-app=kube-dns -o name) -c sidecar

DNS 服务启动了吗?

使用 kubectl get service 命令验证 DNS 服务是否启动。

$ kubectl get svc --namespace=kube-system
NAME          CLUSTER-IP     EXTERNAL-IP   PORT(S)             AGE
...
kube-dns      10.0.0.10      <none>        53/UDP,53/TCP        1h
...

DNS 端点暴露出来了吗?

您可以使用kubectl get endpoints命令验证 DNS 端点是否被暴露。

$ kubectl get ep kube-dns --namespace=kube-system
NAME       ENDPOINTS                       AGE
kube-dns   10.180.3.17:53,10.180.3.17:53    1h

已知问题

Kubernetes安装时不会将节点的 resolv.conf 文件配置为默认使用集群 DNS,因为该过程本身是特定于发行版的。这一步应该放到最后实现。

Kubernetes 集群联邦(多可用区支持)

Kubernetes 1.3 版本起引入了支持多站点 Kubernetes 安装的集群联邦支持。这需要对 Kubernetes 集群 DNS 服务器处理 DNS 查询的方式进行一些小的(向后兼容的)更改,以便于查找联邦服务(跨多个 Kubernetes 集群)。

参考

Kubernetes集群DNS服务器基于 库。它支持正向查找(A 记录),服务查找(SRV 记录)和反向 IP 地址查找(PTR 记录)

看看有没有可疑的日志。以字母“W”,“E”,“F”开头的代表警告、错误和失败。请搜索具有这些日志级别的条目,并使用 来报告意外错误。

如果您已经创建了该服务或它本应该默认创建但没有出现,参考获取更多信息。

如果您没有看到端点,查看文档中的端点部分。

获取更多的 Kubernetes DNS 示例,请参考 Kubernetes GitHub 仓库中的。

Linux 的 libc 不可思议的卡住()限制只能有 3 个 DNS nameserver 记录和 6 个 DNS search 记录。Kubernetes 需要消耗 1 个 nameserver 记录和 3 个 search 记录。这意味着如果本地安装已经使用 3 个 nameserver 或使用 3 个以上的 search 记录,那么其中一些设置将会丢失。有个部分解决该问题的方法,就是节点可以运行 dnsmasq,它将提供更多的 nameserver 条目,但不会有更多的 search 条目。您也可以使用 kubelet 的 --resolv-conf 标志。

如果您使用的是 Alpine 3.3 或更低版本作为基础映像,由于已知的 Alpine 问题,DNS 可能无法正常工作。点击查看更多信息。

CoreDNS
Using CoreDNS for Service Discovery
https://github.com/kubernetes/dns
SkyDNS
kubernetes issues
调试服务
调试服务
cluster-dns示例
查看该2005年起暴出来的bug
这里
Configure DNS Service
Service 和 Pod 的 DNS
自动扩容集群中的 DNS 服务
Using CoreDNS for Service Discovery
DNS lookup flow