kubernetes中文手册
  • 前言
    • 序言
  • 云原生
    • 云原生(Cloud Native)的定义
    • 云原生的设计哲学
    • Kubernetes 的诞生
    • Kubernetes 与云原生应用概览
    • 云原生应用之路 —— 从 Kubernetes 到云原生
    • 定义云原生应用
      • OAM
        • Workload
        • Component
        • Trait
        • Application Scope
        • Application Configuration
      • Crossplane
    • 云原生编程语言
      • 云原生编程语言 Ballerina
      • 云原生编程语言 Pulumi
    • 云原生的未来
  • 快速入门
    • 云原生新手入门指南
    • Play with Kubernetes
    • 快速部署一个云原生本地实验环境
    • 使用 Rancher 在阿里云上部署 Kubenretes 集群
  • 概念与原理
    • Kubernetes 架构
      • 设计理念
      • Etcd 解析
      • 开放接口
        • CRI - Container Runtime Interface(容器运行时接口)
        • CNI - Container Network Interface(容器网络接口)
        • CSI - Container Storage Interface(容器存储接口)
      • 资源对象与基本概念解析
    • Pod 状态与生命周期管理
      • Pod 概览
      • Pod 解析
      • Init 容器
      • Pause 容器
      • Pod 安全策略
      • Pod 的生命周期
      • Pod Hook
      • Pod Preset
      • Pod 中断与 PDB(Pod 中断预算)
    • 集群资源管理
      • Node
      • Namespace
      • Label
      • Annotation
      • Taint 和 Toleration(污点和容忍)
      • 垃圾收集
    • 控制器
      • Deployment
      • StatefulSet
      • DaemonSet
      • ReplicationController 和 ReplicaSet
      • Job
      • CronJob
      • Horizontal Pod Autoscaling
        • 自定义指标 HPA
      • 准入控制器(Admission Controller)
    • 服务发现与路由
      • Service
      • 拓扑感知路由
      • Ingress
        • Traefik Ingress Controller
      • Kubernetes Service API
        • Service API 简介
    • 身份与权限控制
      • ServiceAccount
      • 基于角色的访问控制(RBAC)
      • NetworkPolicy
    • 网络
      • Kubernetes 中的网络解析 —— 以 flannel 为例
      • Kubernetes 中的网络解析 —— 以 calico 为例
      • 具备 API 感知的网络和安全性管理开源软件 Cilium
        • Cilium 架构设计与概念解析
    • 存储
      • Secret
      • ConfigMap
        • ConfigMap 的热更新
      • Volume
      • 持久化卷(Persistent Volume)
      • Storage Class
      • 本地持久化存储
    • 集群扩展
      • 使用自定义资源扩展 API
      • 使用 CRD 扩展 Kubernetes API
      • Aggregated API Server
      • APIService
      • Service Catalog
    • 多集群管理
      • 多集群服务 API(Multi-Cluster Services API)
      • 集群联邦(Cluster Federation)
    • 资源调度
      • 服务质量等级(QoS)
  • 用户指南
    • 用户指南概览
    • 资源对象配置
      • 配置 Pod 的 liveness 和 readiness 探针
      • 配置 Pod 的 Service Account
      • Secret 配置
      • 管理 namespace 中的资源配额
    • 命令使用
      • Docker 用户过渡到 kubectl 命令行指南
      • kubectl 命令概览
      • kubectl 命令技巧大全
      • 使用 etcdctl 访问 Kubernetes 数据
    • 集群安全性管理
      • 管理集群中的 TLS
      • kubelet 的认证授权
      • TLS Bootstrap
      • 创建用户认证授权的 kubeconfig 文件
      • IP 伪装代理
      • 使用 kubeconfig 或 token 进行用户身份认证
      • Kubernetes 中的用户与身份认证授权
      • Kubernetes 集群安全性配置最佳实践
    • 访问 Kubernetes 集群
      • 访问集群
      • 使用 kubeconfig 文件配置跨集群认证
      • 通过端口转发访问集群中的应用程序
      • 使用 service 访问群集中的应用程序
      • 从外部访问 Kubernetes 中的 Pod
      • Cabin - Kubernetes 手机客户端
      • Lens - Kubernetes IDE/桌面客户端
      • Kubernator - 更底层的 Kubernetes UI
    • 在 Kubernetes 中开发部署应用
      • 适用于 Kubernetes 的应用开发部署流程
      • 迁移传统应用到 Kubernetes 中 —— 以 Hadoop YARN 为例
      • 使用 StatefulSet 部署用状态应用
  • 最佳实践
    • 最佳实践概览
    • 在 CentOS 上部署 Kubernetes 集群
      • 创建 TLS 证书和秘钥
      • 创建 kubeconfig 文件
      • 创建高可用 etcd 集群
      • 安装 kubectl 命令行工具
      • 部署 master 节点
      • 安装 flannel 网络插件
      • 部署 node 节点
      • 安装 kubedns 插件
      • 安装 dashboard 插件
      • 安装 heapster 插件
      • 安装 EFK 插件
    • 生产级的 Kubernetes 简化管理工具 kubeadm
      • 使用 kubeadm 在 Ubuntu Server 16.04 上快速构建测试集群
    • 服务发现与负载均衡
      • 安装 Traefik ingress
      • 分布式负载测试
      • 网络和集群性能测试
      • 边缘节点配置
      • 安装 Nginx ingress
      • 安装配置 DNS
        • 安装配置 Kube-dns
        • 安装配置 CoreDNS
    • 运维管理
      • Master 节点高可用
      • 服务滚动升级
      • 应用日志收集
      • 配置最佳实践
      • 集群及应用监控
      • 数据持久化问题
      • 管理容器的计算资源
    • 存储管理
      • GlusterFS
        • 使用 GlusterFS 做持久化存储
        • 使用 Heketi 作为 Kubernetes 的持久存储 GlusterFS 的 external provisioner
        • 在 OpenShift 中使用 GlusterFS 做持久化存储
      • GlusterD-2.0
      • Ceph
        • 用 Helm 托管安装 Ceph 集群并提供后端存储
        • 使用 Ceph 做持久化存储
        • 使用 rbd-provisioner 提供 rbd 持久化存储
      • OpenEBS
        • 使用 OpenEBS 做持久化存储
      • Rook
      • NFS
        • 利用 NFS 动态提供 Kubernetes 后端存储卷
    • 集群与应用监控
      • Heapster
        • 使用 Heapster 获取集群和对象的 metric 数据
      • Prometheus
        • 使用 Prometheus 监控 Kubernetes 集群
        • Prometheus 查询语言 PromQL 使用说明
      • 使用 Vistio 监控 Istio 服务网格中的流量
    • 分布式追踪
      • OpenTracing
    • 服务编排管理
      • 使用 Helm 管理 Kubernetes 应用
      • 构建私有 Chart 仓库
    • 持续集成与发布
      • 使用 Jenkins 进行持续集成与发布
      • 使用 Drone 进行持续集成与发布
    • 更新与升级
      • 手动升级 Kubernetes 集群
      • 升级 dashboard
    • 扩展控制器
      • OpenKruise
        • 原地升级
    • 安全策略
      • 开放策略代理(OPA)
      • 云原生安全
  • 服务网格
    • 服务网格(Service Mesh)
    • 企业级服务网格架构
      • 服务网格基础
      • 服务网格技术对比
      • 服务网格对比 API 网关
      • 采纳和演进
      • 定制和集成
      • 总结
    • Istio
      • 使用 Istio 前需要考虑的问题
      • Istio 中 sidecar 的注入规范及示例
      • 如何参与 Istio 社区及注意事项
      • Istio 免费学习资源汇总
      • Sidecar 的注入与流量劫持
      • Envoy Sidecar 代理的路由转发
      • Istio 如何支持虚拟机
      • Istio 支持虚拟机的历史
    • Envoy
      • Envoy 的架构与基本术语
      • Envoy 作为前端代理
      • Envoy mesh 教程
  • 领域应用
    • 领域应用概览
    • 微服务架构
      • 微服务中的服务发现
      • 使用 Java 构建微服务并发布到 Kubernetes 平台
        • Spring Boot 快速开始指南
    • 大数据
      • Spark 与 Kubernetes
        • Spark standalone on Kubernetes
        • 运行支持 Kubernetes 原生调度的 Spark 程序
    • Serverless 架构
      • 理解 Serverless
      • FaaS(函数即服务)
        • OpenFaaS 快速入门指南
      • Knative
    • 边缘计算
    • 人工智能
    • 可观察性
  • 开发指南
    • 开发指南概览
    • SIG 和工作组
    • 开发环境搭建
      • 本地分布式开发环境搭建(使用 Vagrant 和 Virtualbox)
    • 单元测试和集成测试
    • client-go 示例
      • client-go 中的 informer 源码分析
    • Operator
      • operator-sdk
    • kubebuilder
      • 使用 kubebuilder 创建 operator 示例
    • 高级开发指南
    • 社区贡献
    • Minikube
  • 社区及生态
    • 云原生计算基金会(CNCF)
      • CNCF 章程
      • CNCF 特别兴趣小组(SIG)说明
      • 开源项目加入 CNCF Sandbox 的要求
      • CNCF 中的项目治理
      • CNCF Ambassador
    • 认证及培训
      • 认证 Kubernetes 服务提供商(KCSP)说明
      • 认证 Kubernetes 管理员(CKA)说明
  • 附录
    • 附录说明
    • Kubernetes 中的应用故障排查
    • Kubernetes 相关资讯和情报链接
    • Docker 最佳实践
    • Kubernetes 使用技巧
    • Kubernetes 相关问题记录
    • Kubernetes 及云原生年度总结及展望
      • Kubernetes 与云原生 2017 年年终总结及 2018 年展望
      • Kubernetes 与云原生 2018 年年终总结及 2019 年展望
    • CNCF 年度报告解读
      • CNCF 2018 年年度报告解读
      • CNCF 2020 年年度报告解读
由 GitBook 提供支持
在本页
  • 资源类型
  • Pod 和 容器的资源请求和限制
  • CPU 的含义
  • 内存的含义
  • 具有资源请求的 Pod 如何调度
  • 具有资源限制的 Pod 如何运行
  • 监控计算资源使用
  • 疑难解答
  • 我的 Pod 处于 pending 状态且事件信息显示 failedScheduling
  • 我的容器被终结了
  • 不透明整型资源(Alpha功能)
  • 计划改进
  1. 最佳实践
  2. 运维管理

管理容器的计算资源

上一页数据持久化问题下一页存储管理

最后更新于3年前

当您定义 的时候可以选择为每个容器指定需要的 CPU 和内存(RAM)大小。当为容器指定了资源请求后,调度器就能够更好的判断出将容器调度到哪个节点上。如果您还为容器指定了资源限制,节点上的资源就可以按照指定的方式做竞争。

资源类型

CPU 和 memory 都是 资源类型。资源类型具有基本单位。CPU 的单位是 core,memory 的单位是 byte。

CPU和内存统称为计算资源,也可以称为资源。计算资源的数量是可以被请求、分配和消耗的可测量的。它们与 不同。 API 资源(如 Pod 和 )是可通过 Kubernetes API server 读取和修改的对象。

Pod 和 容器的资源请求和限制

Pod 中的每个容器都可以指定以下的一个或者多个值:

  • spec.containers[].resources.limits.cpu

  • spec.containers[].resources.limits.memory

  • spec.containers[].resources.requests.cpu

  • spec.containers[].resources.requests.memory

尽管只能在个别容器上指定请求和限制,但是我们可以方便地计算出 Pod 资源请求和限制。特定资源类型的Pod 资源请求/限制是 Pod 中每个容器的该类型的资源请求/限制的总和。

CPU 的含义

CPU 资源的限制和请求以 cpu 为单位。

Kubernetes 中的一个 cpu 等于:

  • 1 AWS vCPU

  • 1 GCP Core

  • 1 Azure vCore

  • 1 Hyperthread 在带有超线程的裸机 Intel 处理器上

允许浮点数请求。具有 spec.containers[].resources.requests.cpu 为 0.5 的容器保证了一半 CPU 要求 1 CPU的一半。表达式 0.1 等价于表达式 100m,可以看作 “100 millicpu”。有些人说成是“一百毫 cpu”,其实说的是同样的事情。具有小数点(如 0.1)的请求由 API 转换为100m,精度不超过 1m。因此,可能会优先选择 100m 的形式。

CPU 总是要用绝对数量,不可以使用相对数量;0.1 的 CPU 在单核、双核、48核的机器中的意义是一样的。

内存的含义

内存的限制和请求以字节为单位。您可以使用以下后缀之一作为平均整数或定点整数表示内存:E,P,T,G,M,K。您还可以使用两个字母的等效的幂数:Ei,Pi,Ti ,Gi,Mi,Ki。例如,以下代表大致相同的值:

128974848, 129e6, 129M, 123Mi

下面是个例子。

以下 Pod 有两个容器。每个容器的请求为 0.25 cpu 和 64MiB(226 字节)内存,每个容器的限制为 0.5 cpu 和 128MiB 内存。您可以说该 Pod 请求 0.5 cpu 和 128 MiB 的内存,限制为 1 cpu 和 256MiB 的内存。

apiVersion: v1
kind: Pod
metadata:
  name: frontend
spec:
  containers:
  - name: db
    image: mysql
    resources:
      requests:
        memory: "64Mi"
        cpu: "250m"
      limits:
        memory: "128Mi"
        cpu: "500m"
  - name: wp
    image: wordpress
    resources:
      requests:
        memory: "64Mi"
        cpu: "250m"
      limits:
        memory: "128Mi"
        cpu: "500m"

具有资源请求的 Pod 如何调度

当您创建一个 Pod 时,Kubernetes 调度程序将为 Pod 选择一个节点。每个节点具有每种资源类型的最大容量:可为 Pod 提供的 CPU 和内存量。调度程序确保对于每种资源类型,调度的容器的资源请求的总和小于节点的容量。请注意,尽管节点上的实际内存或 CPU 资源使用量非常低,但如果容量检查失败,则调度程序仍然拒绝在该节点上放置 Pod。当资源使用量稍后增加时,例如在请求率的每日峰值期间,这可以防止节点上的资源短缺。

具有资源限制的 Pod 如何运行

当 kubelet 启动一个 Pod 的容器时,它会将 CPU 和内存限制传递到容器运行时。

当使用 Docker 时:

如果容器超过其内存限制,则可能会被终止。如果可重新启动,则与所有其他类型的运行时故障一样,kubelet 将重新启动它。

如果一个容器超过其内存请求,那么当节点内存不足时,它的 Pod 可能被逐出。

容器可能被允许也可能不被允许超过其 CPU 限制时间。但是,由于 CPU 使用率过高,不会被杀死。

要确定容器是否由于资源限制而无法安排或被杀死,请参阅疑难解答]部分。

监控计算资源使用

Pod 的资源使用情况被报告为 Pod 状态的一部分。

如果为集群配置了可选监控,则可以从监控系统检索 Pod 资源的使用情况。

疑难解答

我的 Pod 处于 pending 状态且事件信息显示 failedScheduling

如果调度器找不到任何该 Pod 可以匹配的节点,则该 Pod 将保持不可调度状态,直到找到一个可以被调度到的位置。每当调度器找不到 Pod 可以调度的地方时,会产生一个事件,如下所示:

$ kubectl describe pod frontend | grep -A 3 Events
Events:
  FirstSeen LastSeen   Count  From          Subobject   PathReason      Message
  36s   5s     6      {scheduler }              FailedScheduling  Failed for reason PodExceedsFreeCPU and possibly others

在上述示例中,由于节点上的 CPU 资源不足,名为 “frontend” 的 Pod 将无法调度。由于内存不足(PodExceedsFreeMemory),类似的错误消息也可能会导致失败。一般来说,如果有这种类型的消息而处于 pending 状态,您可以尝试如下几件事情:

$ kubectl describe nodes e2e-test-minion-group-4lw4
Name:            e2e-test-minion-group-4lw4
[ ... lines removed for clarity ...]
Capacity:
 alpha.kubernetes.io/nvidia-gpu:    0
 cpu:                               2
 memory:                            7679792Ki
 pods:                              110
Allocatable:
 alpha.kubernetes.io/nvidia-gpu:    0
 cpu:                               1800m
 memory:                            7474992Ki
 pods:                              110
[ ... lines removed for clarity ...]
Non-terminated Pods:        (5 in total)
  Namespace    Name                                  CPU Requests  CPU Limits  Memory Requests  Memory Limits
  ---------    ----                                  ------------  ----------  ---------------  -------------
  kube-system  fluentd-gcp-v1.38-28bv1               100m (5%)     0 (0%)      200Mi (2%)       200Mi (2%)
  kube-system  kube-dns-3297075139-61lj3             260m (13%)    0 (0%)      100Mi (1%)       170Mi (2%)
  kube-system  kube-proxy-e2e-test-...               100m (5%)     0 (0%)      0 (0%)           0 (0%)
  kube-system  monitoring-influxdb-grafana-v4-z1m12  200m (10%)    200m (10%)  600Mi (8%)       600Mi (8%)
  kube-system  node-problem-detector-v0.1-fj7m3      20m (1%)      200m (10%)  20Mi (0%)        100Mi (1%)
Allocated resources:
  (Total limits may be over 100 percent, i.e., overcommitted.)
  CPU Requests    CPU Limits    Memory Requests    Memory Limits
  ------------    ----------    ---------------    -------------
  680m (34%)      400m (20%)    920Mi (12%)        1070Mi (14%)

我的容器被终结了

您的容器可能因为资源枯竭而被终结了。要查看容器是否因为遇到资源限制而被杀死,请在相关的 Pod 上调用 kubectl describe pod:

[12:54:41] $ kubectl describe pod simmemleak-hra99
Name:                           simmemleak-hra99
Namespace:                      default
Image(s):                       saadali/simmemleak
Node:                           kubernetes-node-tf0f/10.240.216.66
Labels:                         name=simmemleak
Status:                         Running
Reason:
Message:
IP:                             10.244.2.75
Replication Controllers:        simmemleak (1/1 replicas created)
Containers:
  simmemleak:
    Image:  saadali/simmemleak
    Limits:
      cpu:                      100m
      memory:                   50Mi
    State:                      Running
      Started:                  Tue, 07 Jul 2015 12:54:41 -0700
    Last Termination State:     Terminated
      Exit Code:                1
      Started:                  Fri, 07 Jul 2015 12:54:30 -0700
      Finished:                 Fri, 07 Jul 2015 12:54:33 -0700
    Ready:                      False
    Restart Count:              5
Conditions:
  Type      Status
  Ready     False
Events:
  FirstSeen                         LastSeen                         Count  From                              SubobjectPath                       Reason      Message
  Tue, 07 Jul 2015 12:53:51 -0700   Tue, 07 Jul 2015 12:53:51 -0700  1      {scheduler }                                                          scheduled   Successfully assigned simmemleak-hra99 to kubernetes-node-tf0f
  Tue, 07 Jul 2015 12:53:51 -0700   Tue, 07 Jul 2015 12:53:51 -0700  1      {kubelet kubernetes-node-tf0f}    implicitly required container POD   pulled      Pod container image "gcr.io/google_containers/pause:0.8.0" already present on machine
  Tue, 07 Jul 2015 12:53:51 -0700   Tue, 07 Jul 2015 12:53:51 -0700  1      {kubelet kubernetes-node-tf0f}    implicitly required container POD   created     Created with docker id 6a41280f516d
  Tue, 07 Jul 2015 12:53:51 -0700   Tue, 07 Jul 2015 12:53:51 -0700  1      {kubelet kubernetes-node-tf0f}    implicitly required container POD   started     Started with docker id 6a41280f516d
  Tue, 07 Jul 2015 12:53:51 -0700   Tue, 07 Jul 2015 12:53:51 -0700  1      {kubelet kubernetes-node-tf0f}    spec.containers{simmemleak}         created     Created with docker id 87348f12526a

在上面的例子中,Restart Count: 5 意味着 Pod 中的 simmemleak 容器被终止并重启了五次。

您可以使用 kubectl get pod 命令加上 -o go-template=... 选项来获取之前终止容器的状态。

[13:59:01] $ kubectl get pod -o go-template='{{range.status.containerStatuses}}{{"Container Name: "}}{{.name}}{{"\r\nLastState: "}}{{.lastState}}{{end}}'  simmemleak-60xbc
Container Name: simmemleak
LastState: map[terminated:map[exitCode:137 reason:OOM Killed startedAt:2015-07-07T20:58:43Z finishedAt:2015-07-07T20:58:43Z containerID:docker://0e4095bba1feccdfe7ef9fb6ebffe972b4b14285d5acdec6f0d3ae8a22fad8b2]]

您可以看到容器因为 reason:OOM killed 被终止,OOM 表示 Out Of Memory。

不透明整型资源(Alpha功能)

Kubernetes 1.5 版本中引入不透明整型资源。不透明的整型资源允许集群运维人员发布新的节点级资源,否则系统将不了解这些资源。

用户可以在 Pod 的 spec 中消费这些资源,就像 CPU 和内存一样。调度器负责资源计量,以便在不超过可用量的同时分配给 Pod。

注意: 不透明整型资源在 kubernetes 1.5 中还是 Alpha 版本。只实现了资源计量,节点级别的隔离还处于积极的开发阶段。

不透明整型资源是以 pod.alpha.kubernetes.io/opaque-int-resource- 为前缀的资源。API server 将限制这些资源的数量为整数。有效 数量的例子有 3、3000m 和 3Ki。无效数量的例子有 0.5 和 1500m。

申请使用不透明整型资源需要两步。首先,集群运维人员必须在一个或多个节点上通告每个节点不透明的资源。然后,用户必须在 Pod 中请求不透明资源。

要发布新的不透明整型资源,集群运维人员应向 API server 提交 PATCH HTTP请求,以指定集群中节点的status.capacity 的可用数量。在此操作之后,节点的 status.capacity 将包括一个新的资源。 status.allocatable 字段由 kubelet 异步地使用新资源自动更新。请注意,由于调度器在评估 Pod 适应度时使用节点 status.allocatable 值,所以在使用新资源修补节点容量和请求在该节点上调度资源的第一个 pod 之间可能会有短暂的延迟。

示例

这是一个 HTTP 请求,master 节点是 k8s-master,在 k8s-node-1 节点上通告 5 个 “foo” 资源。

PATCH /api/v1/nodes/k8s-node-1/status HTTP/1.1
Accept: application/json
Content-Type: application/json-patch+json
Host: k8s-master:8080

[
  {
    "op": "add",
    "path": "/status/capacity/pod.alpha.kubernetes.io~1opaque-int-resource-foo",
    "value": "5"
  }
]
curl --header "Content-Type: application/json-patch+json" \
--request PATCH \
--data '[{"op": "add", "path": "/status/capacity/pod.alpha.kubernetes.io~1opaque-int-resource-foo", "value": "5"}]' \
http://k8s-master:8080/api/v1/nodes/k8s-node-1/status
apiVersion: v1
kind: Pod
metadata:
  name: my-pod
spec:
  containers:
  - name: my-container
    image: myimage
    resources:
      requests:
        cpu: 2
        pod.alpha.kubernetes.io/opaque-int-resource-foo: 1

计划改进

在 kubernetes 1.5 版本中仅支持容器对 CPU 和内存的申请和限制。计划增加新的资源类型,包括节点磁盘空间资源和一个可支持自定义资源类型的框架。

spec.containers[].resources.requests.cpu 的值将转换成 millicore 值,这是个浮点数,并乘以1024,这个数字中的较大者或2用作 docker run 命令中的 标志的值。

spec.containers[].resources.limits.cpu 被转换成 millicore 值。被乘以 100000 然后 除以 1000。这个数字用作 docker run 命令中的 标志的值。[--cpu-quota ] 标志被设置成了 100000,表示测量配额使用的默认100ms 周期。如果 [--cpu-cfs-quota] 标志设置为 true,则 kubelet 会强制执行 cpu 限制。从 Kubernetes 1.2 版本起,此标志默认为 true。

spec.containers[].resources.limits.memory 被转换为整型,作为 docker run 命令中的 标志的值。

注意: 在前面的请求中,~1 是 patch 路径中 / 字符的编码。JSON-Patch 中的操作路径值被解释为 JSON-Pointer。更多详细信息请参阅 。

在 kubernetes 1.5 版本中仅允许在容器上指定资源量。计划改进对所有容器在 Pod 中共享资源的计量,如 。

Kubernetes 通过支持通过多级别的 来支持资源的过度使用。

在 kubernetes 1.5 版本中,一个 CPU 单位在不同的云提供商和同一云提供商的不同机器类型中的意味都不同。例如,在 AWS 上,节点的容量报告为 ,而在 GCE 中报告为逻辑内核。我们计划修改 cpu 资源的定义,以便在不同的提供商和平台之间保持一致。

Pod
API 资源
Service
--cpu-shares
--cpu-quota
--memory
IETF RFC 6901, section 3
emptyDir volume
服务质量
ECU