kubernetes中文手册
  • 前言
    • 序言
  • 云原生
    • 云原生(Cloud Native)的定义
    • 云原生的设计哲学
    • Kubernetes 的诞生
    • Kubernetes 与云原生应用概览
    • 云原生应用之路 —— 从 Kubernetes 到云原生
    • 定义云原生应用
      • OAM
        • Workload
        • Component
        • Trait
        • Application Scope
        • Application Configuration
      • Crossplane
    • 云原生编程语言
      • 云原生编程语言 Ballerina
      • 云原生编程语言 Pulumi
    • 云原生的未来
  • 快速入门
    • 云原生新手入门指南
    • Play with Kubernetes
    • 快速部署一个云原生本地实验环境
    • 使用 Rancher 在阿里云上部署 Kubenretes 集群
  • 概念与原理
    • Kubernetes 架构
      • 设计理念
      • Etcd 解析
      • 开放接口
        • CRI - Container Runtime Interface(容器运行时接口)
        • CNI - Container Network Interface(容器网络接口)
        • CSI - Container Storage Interface(容器存储接口)
      • 资源对象与基本概念解析
    • Pod 状态与生命周期管理
      • Pod 概览
      • Pod 解析
      • Init 容器
      • Pause 容器
      • Pod 安全策略
      • Pod 的生命周期
      • Pod Hook
      • Pod Preset
      • Pod 中断与 PDB(Pod 中断预算)
    • 集群资源管理
      • Node
      • Namespace
      • Label
      • Annotation
      • Taint 和 Toleration(污点和容忍)
      • 垃圾收集
    • 控制器
      • Deployment
      • StatefulSet
      • DaemonSet
      • ReplicationController 和 ReplicaSet
      • Job
      • CronJob
      • Horizontal Pod Autoscaling
        • 自定义指标 HPA
      • 准入控制器(Admission Controller)
    • 服务发现与路由
      • Service
      • 拓扑感知路由
      • Ingress
        • Traefik Ingress Controller
      • Kubernetes Service API
        • Service API 简介
    • 身份与权限控制
      • ServiceAccount
      • 基于角色的访问控制(RBAC)
      • NetworkPolicy
    • 网络
      • Kubernetes 中的网络解析 —— 以 flannel 为例
      • Kubernetes 中的网络解析 —— 以 calico 为例
      • 具备 API 感知的网络和安全性管理开源软件 Cilium
        • Cilium 架构设计与概念解析
    • 存储
      • Secret
      • ConfigMap
        • ConfigMap 的热更新
      • Volume
      • 持久化卷(Persistent Volume)
      • Storage Class
      • 本地持久化存储
    • 集群扩展
      • 使用自定义资源扩展 API
      • 使用 CRD 扩展 Kubernetes API
      • Aggregated API Server
      • APIService
      • Service Catalog
    • 多集群管理
      • 多集群服务 API(Multi-Cluster Services API)
      • 集群联邦(Cluster Federation)
    • 资源调度
      • 服务质量等级(QoS)
  • 用户指南
    • 用户指南概览
    • 资源对象配置
      • 配置 Pod 的 liveness 和 readiness 探针
      • 配置 Pod 的 Service Account
      • Secret 配置
      • 管理 namespace 中的资源配额
    • 命令使用
      • Docker 用户过渡到 kubectl 命令行指南
      • kubectl 命令概览
      • kubectl 命令技巧大全
      • 使用 etcdctl 访问 Kubernetes 数据
    • 集群安全性管理
      • 管理集群中的 TLS
      • kubelet 的认证授权
      • TLS Bootstrap
      • 创建用户认证授权的 kubeconfig 文件
      • IP 伪装代理
      • 使用 kubeconfig 或 token 进行用户身份认证
      • Kubernetes 中的用户与身份认证授权
      • Kubernetes 集群安全性配置最佳实践
    • 访问 Kubernetes 集群
      • 访问集群
      • 使用 kubeconfig 文件配置跨集群认证
      • 通过端口转发访问集群中的应用程序
      • 使用 service 访问群集中的应用程序
      • 从外部访问 Kubernetes 中的 Pod
      • Cabin - Kubernetes 手机客户端
      • Lens - Kubernetes IDE/桌面客户端
      • Kubernator - 更底层的 Kubernetes UI
    • 在 Kubernetes 中开发部署应用
      • 适用于 Kubernetes 的应用开发部署流程
      • 迁移传统应用到 Kubernetes 中 —— 以 Hadoop YARN 为例
      • 使用 StatefulSet 部署用状态应用
  • 最佳实践
    • 最佳实践概览
    • 在 CentOS 上部署 Kubernetes 集群
      • 创建 TLS 证书和秘钥
      • 创建 kubeconfig 文件
      • 创建高可用 etcd 集群
      • 安装 kubectl 命令行工具
      • 部署 master 节点
      • 安装 flannel 网络插件
      • 部署 node 节点
      • 安装 kubedns 插件
      • 安装 dashboard 插件
      • 安装 heapster 插件
      • 安装 EFK 插件
    • 生产级的 Kubernetes 简化管理工具 kubeadm
      • 使用 kubeadm 在 Ubuntu Server 16.04 上快速构建测试集群
    • 服务发现与负载均衡
      • 安装 Traefik ingress
      • 分布式负载测试
      • 网络和集群性能测试
      • 边缘节点配置
      • 安装 Nginx ingress
      • 安装配置 DNS
        • 安装配置 Kube-dns
        • 安装配置 CoreDNS
    • 运维管理
      • Master 节点高可用
      • 服务滚动升级
      • 应用日志收集
      • 配置最佳实践
      • 集群及应用监控
      • 数据持久化问题
      • 管理容器的计算资源
    • 存储管理
      • GlusterFS
        • 使用 GlusterFS 做持久化存储
        • 使用 Heketi 作为 Kubernetes 的持久存储 GlusterFS 的 external provisioner
        • 在 OpenShift 中使用 GlusterFS 做持久化存储
      • GlusterD-2.0
      • Ceph
        • 用 Helm 托管安装 Ceph 集群并提供后端存储
        • 使用 Ceph 做持久化存储
        • 使用 rbd-provisioner 提供 rbd 持久化存储
      • OpenEBS
        • 使用 OpenEBS 做持久化存储
      • Rook
      • NFS
        • 利用 NFS 动态提供 Kubernetes 后端存储卷
    • 集群与应用监控
      • Heapster
        • 使用 Heapster 获取集群和对象的 metric 数据
      • Prometheus
        • 使用 Prometheus 监控 Kubernetes 集群
        • Prometheus 查询语言 PromQL 使用说明
      • 使用 Vistio 监控 Istio 服务网格中的流量
    • 分布式追踪
      • OpenTracing
    • 服务编排管理
      • 使用 Helm 管理 Kubernetes 应用
      • 构建私有 Chart 仓库
    • 持续集成与发布
      • 使用 Jenkins 进行持续集成与发布
      • 使用 Drone 进行持续集成与发布
    • 更新与升级
      • 手动升级 Kubernetes 集群
      • 升级 dashboard
    • 扩展控制器
      • OpenKruise
        • 原地升级
    • 安全策略
      • 开放策略代理(OPA)
      • 云原生安全
  • 服务网格
    • 服务网格(Service Mesh)
    • 企业级服务网格架构
      • 服务网格基础
      • 服务网格技术对比
      • 服务网格对比 API 网关
      • 采纳和演进
      • 定制和集成
      • 总结
    • Istio
      • 使用 Istio 前需要考虑的问题
      • Istio 中 sidecar 的注入规范及示例
      • 如何参与 Istio 社区及注意事项
      • Istio 免费学习资源汇总
      • Sidecar 的注入与流量劫持
      • Envoy Sidecar 代理的路由转发
      • Istio 如何支持虚拟机
      • Istio 支持虚拟机的历史
    • Envoy
      • Envoy 的架构与基本术语
      • Envoy 作为前端代理
      • Envoy mesh 教程
  • 领域应用
    • 领域应用概览
    • 微服务架构
      • 微服务中的服务发现
      • 使用 Java 构建微服务并发布到 Kubernetes 平台
        • Spring Boot 快速开始指南
    • 大数据
      • Spark 与 Kubernetes
        • Spark standalone on Kubernetes
        • 运行支持 Kubernetes 原生调度的 Spark 程序
    • Serverless 架构
      • 理解 Serverless
      • FaaS(函数即服务)
        • OpenFaaS 快速入门指南
      • Knative
    • 边缘计算
    • 人工智能
    • 可观察性
  • 开发指南
    • 开发指南概览
    • SIG 和工作组
    • 开发环境搭建
      • 本地分布式开发环境搭建(使用 Vagrant 和 Virtualbox)
    • 单元测试和集成测试
    • client-go 示例
      • client-go 中的 informer 源码分析
    • Operator
      • operator-sdk
    • kubebuilder
      • 使用 kubebuilder 创建 operator 示例
    • 高级开发指南
    • 社区贡献
    • Minikube
  • 社区及生态
    • 云原生计算基金会(CNCF)
      • CNCF 章程
      • CNCF 特别兴趣小组(SIG)说明
      • 开源项目加入 CNCF Sandbox 的要求
      • CNCF 中的项目治理
      • CNCF Ambassador
    • 认证及培训
      • 认证 Kubernetes 服务提供商(KCSP)说明
      • 认证 Kubernetes 管理员(CKA)说明
  • 附录
    • 附录说明
    • Kubernetes 中的应用故障排查
    • Kubernetes 相关资讯和情报链接
    • Docker 最佳实践
    • Kubernetes 使用技巧
    • Kubernetes 相关问题记录
    • Kubernetes 及云原生年度总结及展望
      • Kubernetes 与云原生 2017 年年终总结及 2018 年展望
      • Kubernetes 与云原生 2018 年年终总结及 2019 年展望
    • CNCF 年度报告解读
      • CNCF 2018 年年度报告解读
      • CNCF 2020 年年度报告解读
由 GitBook 提供支持
在本页
  • 定义 liveness命令
  • 定义一个liveness HTTP请求
  • 定义TCP liveness探针
  • 使用命名的端口
  • 定义readiness探针
  • 配置Probe
  • 参考
  1. 用户指南
  2. 资源对象配置

配置 Pod 的 liveness 和 readiness 探针

上一页资源对象配置下一页配置 Pod 的 Service Account

最后更新于3年前

当你使用kubernetes的时候,有没有遇到过Pod在启动后一会就挂掉然后又重新启动这样的恶性循环?你有没有想过kubernetes是如何检测pod是否还存活?虽然容器已经启动,但是kubernetes如何知道容器的进程是否准备好对外提供服务了呢?让我们通过kubernetes官网的这篇文章,来一探究竟。

本文将展示如何配置容器的存活和可读性探针。

Kubelet使用liveness probe(存活探针)来确定何时重启容器。例如,当应用程序处于运行状态但无法做进一步操作,liveness探针将捕获到deadlock,重启处于该状态下的容器,使应用程序在存在bug的情况下依然能够继续运行下去(谁的程序还没几个bug呢)。

Kubelet使用readiness probe(就绪探针)来确定容器是否已经就绪可以接受流量。只有当Pod中的容器都处于就绪状态时kubelet才会认定该Pod处于就绪状态。该信号的作用是控制哪些Pod应该作为service的后端。如果Pod处于非就绪状态,那么它们将会被从service的load balancer中移除。

定义 liveness命令

许多长时间运行的应用程序最终会转换到broken状态,除非重新启动,否则无法恢复。Kubernetes提供了liveness probe来检测和补救这种情况。

在本次练习将基于 gcr.io/google_containers/busybox镜像创建运行一个容器的Pod。以下是Pod的配置文件exec-liveness.yaml:

apiVersion: v1
kind: Pod
metadata:
  labels:
    test: liveness
  name: liveness-exec
spec:
  containers:
  - name: liveness
    args:
    - /bin/sh
    - -c
    - touch /tmp/healthy; sleep 30; rm -rf /tmp/healthy; sleep 600
    image: gcr.io/google_containers/busybox
    livenessProbe:
      exec:
        command:
        - cat
        - /tmp/healthy
      initialDelaySeconds: 5
      periodSeconds: 5

该配置文件给Pod配置了一个容器。periodSeconds 规定kubelet要每隔5秒执行一次liveness probe。 initialDelaySeconds 告诉kubelet在第一次执行probe之前要的等待5秒钟。探针检测命令是在容器中执行 cat /tmp/healthy 命令。如果命令执行成功,将返回0,kubelet就会认为该容器是活着的并且很健康。如果返回非0值,kubelet就会杀掉这个容器并重启它。

容器启动时,执行该命令:

/bin/sh -c "touch /tmp/healthy; sleep 30; rm -rf /tmp/healthy; sleep 600"

在容器生命的最初30秒内有一个 /tmp/healthy 文件,在这30秒内 cat /tmp/healthy命令会返回一个成功的返回码。30秒后, cat /tmp/healthy 将返回失败的返回码。

创建Pod:

kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/exec-liveness.yaml

在30秒内,查看Pod的event:

kubectl describe pod liveness-exec

结果显示没有失败的liveness probe:

FirstSeen    LastSeen    Count   From            SubobjectPath           Type        Reason      Message
--------- --------    -----   ----            -------------           --------    ------      -------
24s       24s     1   {default-scheduler }                    Normal      Scheduled   Successfully assigned liveness-exec to worker0
23s       23s     1   {kubelet worker0}   spec.containers{liveness}   Normal      Pulling     pulling image "gcr.io/google_containers/busybox"
23s       23s     1   {kubelet worker0}   spec.containers{liveness}   Normal      Pulled      Successfully pulled image "gcr.io/google_containers/busybox"
23s       23s     1   {kubelet worker0}   spec.containers{liveness}   Normal      Created     Created container with docker id 86849c15382e; Security:[seccomp=unconfined]
23s       23s     1   {kubelet worker0}   spec.containers{liveness}   Normal      Started     Started container with docker id 86849c15382e

启动35秒后,再次查看pod的event:

kubectl describe pod liveness-exec

在最下面有一条信息显示liveness probe失败,容器被删掉并重新创建。

FirstSeen LastSeen    Count   From            SubobjectPath           Type        Reason      Message
--------- --------    -----   ----            -------------           --------    ------      -------
37s       37s     1   {default-scheduler }                    Normal      Scheduled   Successfully assigned liveness-exec to worker0
36s       36s     1   {kubelet worker0}   spec.containers{liveness}   Normal      Pulling     pulling image "gcr.io/google_containers/busybox"
36s       36s     1   {kubelet worker0}   spec.containers{liveness}   Normal      Pulled      Successfully pulled image "gcr.io/google_containers/busybox"
36s       36s     1   {kubelet worker0}   spec.containers{liveness}   Normal      Created     Created container with docker id 86849c15382e; Security:[seccomp=unconfined]
36s       36s     1   {kubelet worker0}   spec.containers{liveness}   Normal      Started     Started container with docker id 86849c15382e
2s        2s      1   {kubelet worker0}   spec.containers{liveness}   Warning     Unhealthy   Liveness probe failed: cat: can't open '/tmp/healthy': No such file or directory

再等30秒,确认容器已经重启:

kubectl get pod liveness-exec

从输出结果来RESTARTS值加1了。

NAME            READY     STATUS    RESTARTS   AGE
liveness-exec   1/1       Running   1          1m

定义一个liveness HTTP请求

我们还可以使用HTTP GET请求作为liveness probe。下面是一个基于gcr.io/google_containers/liveness镜像运行了一个容器的Pod的例子http-liveness.yaml:

apiVersion: v1
kind: Pod
metadata:
  labels:
    test: liveness
  name: liveness-http
spec:
  containers:
  - name: liveness
    args:
    - /server
    image: gcr.io/google_containers/liveness
    livenessProbe:
      httpGet:
        path: /healthz
        port: 8080
        httpHeaders:
          - name: X-Custom-Header
            value: Awesome
      initialDelaySeconds: 3
      periodSeconds: 3

该配置文件只定义了一个容器,livenessProbe 指定kubelet需要每隔3秒执行一次liveness probe。initialDelaySeconds 指定kubelet在该执行第一次探测之前需要等待3秒钟。该探针将向容器中的server的8080端口发送一个HTTP GET请求。如果server的/healthz路径的handler返回一个成功的返回码,kubelet就会认定该容器是活着的并且很健康。如果返回失败的返回码,kubelet将杀掉该容器并重启它。

任何大于200小于400的返回码都会认定是成功的返回码。其他返回码都会被认为是失败的返回码。

最开始的10秒该容器是活着的, /healthz handler返回200的状态码。这之后将返回500的返回码。

http.HandleFunc("/healthz", func(w http.ResponseWriter, r *http.Request) {
    duration := time.Now().Sub(started)
    if duration.Seconds() > 10 {
        w.WriteHeader(500)
        w.Write([]byte(fmt.Sprintf("error: %v", duration.Seconds())))
    } else {
        w.WriteHeader(200)
        w.Write([]byte("ok"))
    }
})

容器启动3秒后,kubelet开始执行健康检查。第一次健康监测会成功,但是10秒后,健康检查将失败,kubelet将杀掉和重启容器。

创建一个Pod来测试一下HTTP liveness检测:

kubectl create -f https://k8s.io/docs/tasks/configure-pod-container/http-liveness.yaml

After 10 seconds, view Pod events to verify that liveness probes have failed and the Container has been restarted:

10秒后,查看Pod的event,确认liveness probe失败并重启了容器。

kubectl describe pod liveness-http

定义TCP liveness探针

第三种liveness probe使用TCP Socket。 使用此配置,kubelet将尝试在指定端口上打开容器的套接字。 如果可以建立连接,容器被认为是健康的,如果不能就认为是失败的。

apiVersion: v1
kind: Pod
metadata:
  name: goproxy
  labels:
    app: goproxy
spec:
  containers:
  - name: goproxy
    image: gcr.io/google_containers/goproxy:0.1
    ports:
    - containerPort: 8080
    readinessProbe:
      tcpSocket:
        port: 8080
      initialDelaySeconds: 5
      periodSeconds: 10
    livenessProbe:
      tcpSocket:
        port: 8080
      initialDelaySeconds: 15
      periodSeconds: 20

如您所见,TCP检查的配置与HTTP检查非常相似。 此示例同时使用了readiness和liveness probe。 容器启动后5秒钟,kubelet将发送第一个readiness probe。 这将尝试连接到端口8080上的goproxy容器。如果探测成功,则该pod将被标记为就绪。Kubelet将每隔10秒钟执行一次该检查。

除了readiness probe之外,该配置还包括liveness probe。 容器启动15秒后,kubelet将运行第一个liveness probe。 就像readiness probe一样,这将尝试连接到goproxy容器上的8080端口。如果liveness probe失败,容器将重新启动。

使用命名的端口

可以使用命名的ContainerPort作为HTTP或TCP liveness检查:

ports:
- name: liveness-port
  containerPort: 8080
  hostPort: 8080

livenessProbe:
  httpGet:
  path: /healthz
  port: liveness-port

定义readiness探针

有时,应用程序暂时无法对外部流量提供服务。 例如,应用程序可能需要在启动期间加载大量数据或配置文件。 在这种情况下,你不想杀死应用程序,但你也不想发送请求。 Kubernetes提供了readiness probe来检测和减轻这些情况。 Pod中的容器可以报告自己还没有准备,不能处理Kubernetes服务发送过来的流量。

Readiness probe的配置跟liveness probe很像。唯一的不同是使用 readinessProbe 而不是livenessProbe。

readinessProbe:
  exec:
    command:
    - cat
    - /tmp/healthy
  initialDelaySeconds: 5
  periodSeconds: 5

Readiness probe的HTTP和TCP的探测器配置跟liveness probe一样。

Readiness和livenss probe可以并行用于同一容器。 使用两者可以确保流量无法到达未准备好的容器,并且容器在失败时重新启动。

配置Probe

Probe 中有很多精确和详细的配置,通过它们你能准确的控制liveness和readiness检查:

  • initialDelaySeconds:容器启动后第一次执行探测是需要等待多少秒。

  • periodSeconds:执行探测的频率。默认是10秒,最小1秒。

  • timeoutSeconds:探测超时时间。默认1秒,最小1秒。

  • successThreshold:探测失败后,最少连续探测成功多少次才被认定为成功。默认是1。对于liveness必须是1。最小值是1。

  • failureThreshold:探测成功后,最少连续探测失败多少次才被认定为失败。默认是3。最小值是1。

HTTP probe 中可以给 httpGet设置其他配置项:

  • host:连接的主机名,默认连接到pod的IP。你可能想在http header中设置"Host"而不是使用IP。

  • scheme:连接使用的schema,默认HTTP。

  • path: 访问的HTTP server的path。

  • httpHeaders:自定义请求的header。HTTP运行重复的header。

  • port:访问的容器的端口名字或者端口号。端口号必须介于1和65535之间。

对于HTTP探测器,kubelet向指定的路径和端口发送HTTP请求以执行检查。 Kubelet将probe发送到容器的IP地址,除非地址被httpGet中的可选host字段覆盖。 在大多数情况下,你不想设置主机字段。 有一种情况下你可以设置它。 假设容器在127.0.0.1上侦听,并且Pod的hostNetwork字段为true。 然后,在httpGet下的host应该设置为127.0.0.1。 如果你的pod依赖于虚拟主机,这可能是更常见的情况,你不应该是用host,而是应该在httpHeaders中设置Host头。

参考

关于 的更多信息

Configure Liveness and Readiness Probes
Container Probes